Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.

Identifieur interne : 002F69 ( Main/Exploration ); précédent : 002F68; suivant : 002F70

Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.

Auteurs : Valdeir Arantes [Canada] ; Jack N. Saddler

Source :

RBID : pubmed:21310050

Abstract

A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the cellulose chains per se, but rather the limited accessibility of the enzymes to the cellulose chains due to the physical structure of the cellulosic substrate.

DOI: 10.1186/1754-6834-4-3
PubMed: 21310050
PubMed Central: PMC3042927


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.</title>
<author>
<name sortKey="Arantes, Valdeir" sort="Arantes, Valdeir" uniqKey="Arantes V" first="Valdeir" last="Arantes">Valdeir Arantes</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forestry Products Biotechnology/Bioenergy Group, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC, V6T 1Z4, Canada. varantes@forestry.ubc.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Forestry Products Biotechnology/Bioenergy Group, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saddler, Jack N" sort="Saddler, Jack N" uniqKey="Saddler J" first="Jack N" last="Saddler">Jack N. Saddler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21310050</idno>
<idno type="pmid">21310050</idno>
<idno type="doi">10.1186/1754-6834-4-3</idno>
<idno type="pmc">PMC3042927</idno>
<idno type="wicri:Area/Main/Corpus">002F28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F28</idno>
<idno type="wicri:Area/Main/Curation">002F28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F28</idno>
<idno type="wicri:Area/Main/Exploration">002F28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.</title>
<author>
<name sortKey="Arantes, Valdeir" sort="Arantes, Valdeir" uniqKey="Arantes V" first="Valdeir" last="Arantes">Valdeir Arantes</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forestry Products Biotechnology/Bioenergy Group, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC, V6T 1Z4, Canada. varantes@forestry.ubc.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Forestry Products Biotechnology/Bioenergy Group, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saddler, Jack N" sort="Saddler, Jack N" uniqKey="Saddler J" first="Jack N" last="Saddler">Jack N. Saddler</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="eISSN">1754-6834</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en"> A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the cellulose chains per se, but rather the limited accessibility of the enzymes to the cellulose chains due to the physical structure of the cellulosic substrate.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">21310050</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1754-6834</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.</ArticleTitle>
<Pagination>
<MedlinePgn>3</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1754-6834-4-3</ELocationID>
<Abstract>
<AbstractText> A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the cellulose chains per se, but rather the limited accessibility of the enzymes to the cellulose chains due to the physical structure of the cellulosic substrate.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Arantes</LastName>
<ForeName>Valdeir</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Forestry Products Biotechnology/Bioenergy Group, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC, V6T 1Z4, Canada. varantes@forestry.ubc.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saddler</LastName>
<ForeName>Jack N</ForeName>
<Initials>JN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21310050</ArticleId>
<ArticleId IdType="pii">1754-6834-4-3</ArticleId>
<ArticleId IdType="doi">10.1186/1754-6834-4-3</ArticleId>
<ArticleId IdType="pmc">PMC3042927</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Biochem Biotechnol. 2003 Spring;105 -108:319-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2008 Sep-Oct;24(5):1178-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19194930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2005 Spring;121-124:163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Dec 30;88(7):797-824</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15538721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2007 Sep 1;98(1):112-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2001 May 1;292(1):125-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2003 Jul-Aug;19(4):1109-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1988 Aug 20;32(5):698-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18587771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2007 Jun 1;97(2):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17058283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2009 Sep 9;57(17):7771-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19722706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2007 Sep;98(13):2503-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17113771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Oct;101(20):7827-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20570139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 2007;108:67-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17530205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2006 Aug 5;94(5):851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16523526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Feb;26(2):169-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18259168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2007 Sep-Oct;23(5):1130-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17718502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2006 Spring;129-132:55-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1998 Jun 5;58(5):494-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10099285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2010 May;161(1-8):1-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19820908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 2007;108:95-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17594064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 1999 Spring;77-79:867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2006 Apr 5;93(5):880-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16345088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2001 Nov-Dec;17(6):1049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11735439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1999 Aug 5;64(3):284-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10397865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1996 Aug 20;51(4):375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18629790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2009;2(1):28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2007 Apr 4;55(7):2575-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2009 Feb 1;102(2):457-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18781688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2010;3:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2002 Spring;98-100:59-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12018284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1999 Oct 1;15(5):804-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Saddler, Jack N" sort="Saddler, Jack N" uniqKey="Saddler J" first="Jack N" last="Saddler">Jack N. Saddler</name>
</noCountry>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Arantes, Valdeir" sort="Arantes, Valdeir" uniqKey="Arantes V" first="Valdeir" last="Arantes">Valdeir Arantes</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21310050
   |texte=   Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21310050" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020